
In Proceedings of the 9th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 2016),
Leipzig, Germany, June 2016.

Minimum Cost Matching for Autonomous

Carsharing

Josiah P. Hanna ∗ Michael Albert ∗ Donna Chen ∗∗ Peter Stone ∗

∗ Computer Science Department, University of Texas at Austin, Austin, TX
78712 USA (e-mail: {jphanna,malbert,pstone}@cs.utexas.edu).

∗∗ Department of Civil & Environmental Engineering, University of Virginia,
Charlottesville, VA 22904 USA (e-mail: author@snu.ac.kr)

Abstract: Carsharing programs provide an alternative to private vehicle ownership. Combining car-
sharing programs with autonomous vehicles would improve user access to vehicles thereby removing
one of the main challenges to widescale adoption of these programs. While the ability to easily move
cars to meet demand would be significant for carsharing programs, if implemented incorrectly it could
lead to worse system performance. In this paper, we seek to improve the performance of a fleet of
shared autonomous vehicles through improved matching of vehicles to passengers requesting rides. We
consider carsharing with autonomous vehicles as an assignment problem and examine four different
methods for matching cars to users in a dynamic setting. We show how applying a recent algorithm
(Scalable Collision-avoiding Role Assignment with Minimal-makespan or SCRAM) for minimizing the
maximal edge in a perfect matching can result in a more efficient, reliable, and fair carsharing system.
Our results highlight some of the problems with greedy or decentralized approaches. Introducing a
centralized system creates the possibility for users to strategically mis-report their locations and improve
their expected wait time so we provide a proof demonstrating that cancellation fees can be applied to
eliminate the incentive to mis-report location.

Keywords: Autonomous vehicles, autonomous mobile robots, Minimal-makespan matching, Intelligent
Transportation Systems, Multi-Vehicle Systems, SCRAM, Car-sharing

1. INTRODUCTION

Autonomous vehicle technology is becoming a reality. Driver-
less cars have the potential to make travel safer, increase
fuel economy, and reduce pollution (Fagnant and Kockelman,
2014). However the potential of this technology does not have
to be limited to a new way to move people from point A
to point B. Autonomous vehicles have the potential to revo-
lutionize modern transportation systems such as intersections
(Dresner and Stone, 2008), dynamic lane openings and closings
(Hausknecht et al., 2011), and, as we demonstrate, carsharing.

Carsharing is a transportation service where users can access a
personal vehicle when desired without the need to own a private
vehicle. A user reserves a vehicle and then goes to the vehicle’s
location where service begins. The user can then end his or
her trip at any location within a given geofence. One problem
with current systems is that vehicles may be moved from high
demand to low demand areas. Then the vehicle is likely to
remain unused for a long time between trips. Additionally, the
nearest vehicle to a user may be too far to walk. Both of these
problems have hindered the growth of carsharing programs.

Autonomous vehicles offer a promising solution to these prob-
lems. An autonomous vehicle can meet a user at a requested lo-
cation and drop him or her off at the desired destination. When

⋆ This work has taken place in the Learning Agents Research Group (LARG) at

UT Austin. LARG research is supported in part by NSF (CNS-1330072, CNS-

1305287), ONR (21C184-01), AFRL (FA8750-14-1-0070), AFOSR (FA9550-

14-1-0087), and TxDOT (0-6838, 0-6847). Josiah is supported by an NSF

Graduate Research Fellowship.

not in use, the vehicle can move to other users or strategically
relocate to an area with high demand (Fagnant and Kockelman,
2014). Driverless cars can remain in service at all times (except
for maintenance or refueling) so the carsharing fleet remains
close to full strength throughout the day, and automated com-
munication between cars can allow for coordination to improve
system performance. We consider carsharing with autonomous
vehicles as a multiagent system and look at how best to coordi-
nate the assignment of vehicles to users to improve the system
performance. Specifically, we view users and available vehicles
as forming a bipartite graph. We examine and evaluate different
maximal matching algorithms in the context of a carsharing
simulation developed by Fagnant and Kockelman (2014).

For an autonomous carsharing system to be practical it must
meet three requirements; 1) the system must be optimal, mean-
ing it provides users service in the shortest amount of time pos-
sible after they request a ride, 2) the system must be efficient,
meaning distance traveled without passengers in the vehicle
should be minimized as they are not directly serving users but
still contribute to pollution and add fuel costs, and 3) the system
must be “fair,” meaning that a few users are not overly penalized
for the sake of other users. A simple minimum cost maximal
matching of the user-vehicle graph could address the require-
ments of optimality and efficiency, but it likely will leave some
users with very long wait times in order to service a few users
faster. To better address these issues we use a recent algorithm
called SCRAM (Scalable Collision-avoiding Role Assignment
with Minimal-makespan) from the class of minimal-makespan
matching algorithms (MacAlpine et al., 2015). SCRAM finds a



matching in a bipartite graph such that the maximal cost edge
in the matching is minimized. Minimizing the makespan (the
time it takes for all vehicles to reach their destination) ensures
that we obtain an efficient allocation of cars to users subject to
the constraint that the longest time any single user has to wait
is minimized. In this sense, we view SCRAM as a more “fair”
allocation of cars to users.

However, we also demonstrate that while centralized ap-
proaches to car assignment in a carsharing system can be more
efficient and fair, they are subject to strategic manipulation by
the users. We illustrate this problem with a situation under
which a user achieves a lower expected wait time if he falsely
reports his location. While, previous work has examined the
incentive to strategically misreport the priority of trips (Kamar
and Horvitz, 2009; Kleiner et al., 2011), we believe we are the
first to demonstrate the feasibility of strategically misreporting
one’s location. We also show that this problem can be solved
with an appropriate cancellation fee for certain centralized ap-
proaches.

2. RELATED WORK

The car-sharing system discussed in this paper is an example of
an autonomous mobility-on-demand (AMoD) system (Zhang
et al., 2015). Previous work has proposed various methods
for optimizing the user-vehicle assignment problem in AMoD
systems. Acquaviva et al. use a mixed integer linear program
to optimize service (2015) while Zhang et al. propose solutions
based on queueing networks (2016). These approaches do not
consider “fairness” as an objective and assume cars begin
serving users at fixed stations which is an assumption we relax
here. As mentioned in Section 1, one problem with existing
carsharing services is that vehicles may be moved out of areas
of high demand and then remain unused. Autonomous vehicles
do not face this problem since they can always reach users on
their own; however, a strategic relocation strategy can reduce
unoccupied vehicle distance travelled while ensuring enough
vehicles to meet demand (Fagnant and Kockelman, 2014).
Dynamic pricing of trips based on an auction mechanism is
another way to ensure that vehicles are located where they are
most needed by customers (Chow and Yu, 2015). In contrast to
these two methods we use matching algorithms to efficiently get
vehicles where they are needed without additional mechanisms
for already having vehicles in the right place.

Another related body of work is the taxi-dispatch literature.
Similar to future carsharing systems, systems of taxis and cus-
tomers can also be modelled as multiagent systems (Chen and
Cheng, 2010). While the distinction between taxis and shared
autonomous cars may seem narrow, human taxi drivers bring
their own preferences and utilities which need to be modelled
to maximize performance (Seow et al., 2007). In contrast, au-
tonomous vehicles can be operated purely for customer or sys-
tem utility. Previous work has also considered what information
should be made available to users and drivers in a taxi-dispatch
system to facilitate service (Lee et al., 2013). We assume full
knowledge (or knowledge of a distribution) of other agents’
positions in our analysis of strategic agent behavior. While all
of this prior work contributes to smarter transportation systems,
this research is, to the best of our knowledge, the first to study
in detail the impacts of different matching algorithms on au-
tonomous carsharing.

3. ALGORITHMIC APPROACHES TO CAR
ASSIGNMENT

The challenge we consider is how to assign vehicles to users
in a setting where the number of available vehicles and users
requesting rides is constantly changing. An obvious way to
handle the assignment problem would be to let users request
the nearest vehicle to him on a first come first served basis
which is the approach adopted by current transportation and
carsharing services such as Uber and Car2Go. Unfortunately
such straightforward approaches are not likely to be optimal in
terms of average user wait time or vehicle distance traveled in
excess of what is needed to meet demand. In addition, we would
like to have a system that is “fair” in that it does not achieve
optimality by forcing a small subset of users to experience very
long wait times.

We assume time is discretized and at every time step users
can make requests for vehicles and vehicles can move a fixed
amount. We also assume that once a vehicle is assigned to a user
they will keep traveling to that user. This assignment problem
can be represented as a sequence of graphs Gt = (Ut, Vt, Et)
where Ut is the set of users requesting vehicles at time t and Vt

is the set of available vehicles at time t. Et is the set of edges
e = (u, v) representing the current distance from user u and
vehicle v at time step t. For each edge, e = (u, v), we use e.dist
to refer to the distance from u to v. Any user or vehicle not
assigned at time step t will appear in graph Gt+1. At each time
step the goal is to find an assignment,At, which is a set of edges
matching users to vehicles. Formally, we want to maximize the
size of At while minimizing the sum of distances over the edges
in At and while minimizing the longest edge that occurs in At.
This equates to serving as many users as possible, reducing user
wait and excess distance traveled, and finding a “fair” solution.
We next introduce a series of increasingly complex matching
algorithms to address the assignment problem, and motivate
their strengths and weaknesses.

3.1 Greedy Matching

The simplest matching algorithm is to allow users to request
the nearest unoccupied vehicle. We refer to this method as
the decentralized method because it could be implemented
with direct communication between a user and a vehicle. For
experiments, we implement the method by greedily matching
users to vehicles in random order. At each time step we draw
a user, u, uniformly at random from Ut and attempt to pair
him with a vehicle, v, such that (u, v).dist is minimized. If
successful, u and v are removed from Ut and Vt respectively
and (u, v) is added to the set of assignments,At. If unsuccessful
u will be added to the set of unserved users, Āt, which can
be considered at the next time step. Pseudocode is shown in
Algorithm 1. Figures 1a and 1b illustrate how this approach
can result in sub-optimal matchings.

3.2 Centralized Greedy Matching

A natural improvement on the decentralized greedy approach is
to provide centralized coordination to ensure that every car is
matched with its closest user. The centralized greedy matching
algorithm starts by iterating over each u ∈ Ut and trying to
find v ∈ Vt such that (u, v).dist ≤ r where r is a fixed
radius. For each (u, v) found, u and v are removed from Ut

and Vt and the procedure repeats with r incremented. The loop
terminates when r reaches a preset maximum value or Ut or Vt

becomes empty. Full pseudocode is shown in Algorithm 2. The
advantage of this approach is that a vehicle will not be assigned



Algorithm 1 Pseudocode for the decentralized greedy
matching assignment algorithm. The subroutine
findClosestVehicle(u, V ) returns v ∈ V that minimizes
(u, v).dist or NULL if one does not exist.

1: function DECENTRALIZED(Gt = (Ut, Vt, Et))
2: At = ∅
3: Āt = ∅
4: for all u ∈ Ut do
5: v = findClosestVehicle(u, Vt)
6: if v 6= NULL then
7: At = At ∪ {(u, v)}
8: else
9: Āt = Āt ∪ {u}

10: end if
11: end for
12: return At, Āt

13: end function

Algorithm 2 Pseudocode for the centralized greedy matching
assignment algorithm. l is the maximum radius to search. The
subroutine searchForCarAtDistance(u, V, r) returns a vehicle
such that (u, v).dist = r or NULL if one cannot be found.

1: function GREEDYCENTRALIZED(Gt = (Ut, Vt, Et), l)
2: At = ∅
3: r = 1
4: while r ≤ limit and Ut 6= ∅ and Vt 6= ∅ do
5: for all u ∈ Ut|u.assigned = False do
6: v = searchForCarAtDistance(u, Vt, r)
7: if v 6= NULL then
8: At = At ∪ {(u, v)}
9: end if

10: end for
11: r = r + 1
12: end while
13: Āt = {u ∈ Ut|u.assigned = False}
14: return At, Āt

15: end function

to a user if it could have been assigned to another passenger
with a smaller distance. The disadvantage is that there are no
guarantees that the assignment will be optimal. Figures 1c and
1d illustrate a scenario where this approach fails to produce the
optimal solution.

3.3 Hungarian Algorithm

The Hungarian algorithm (Kuhn, 1955), which is guaranteed to
find a minimum cost perfect matching in a bipartite graph, is
a natural fit for the goals of efficiency and optimality. Since
the Hungarian algorithm requires a perfect matching, and in
general |Ut| 6= |Vt|, we augment the smaller of the two sets with
dummy vertices, ud or vd. For all edges of the form e = (u, vd)
or e = (ud, v) we have e.dist = 0. When the Hungarian
algorithm is run on this new graph, the assignment returned
will be the maximal matching for Gt once edges that include
dummy vertices are removed (MacAlpine et al., 2015). In the
case that |Ut| > |Vt| any user matched with a dummy vehicle is
unable to be matched and must try again in the next time step.
The Hungarian algorithm can be implemented to run in time
O(n3), fast enough to compute in real time for problems of
this scale. The Hungarian algorithm is well known so we omit
pseudocode. Our implementation matches the input and output
of the other algorithms.

Algorithm 3 Pseudocode for SCRAM. The subroutine
getMinimalMaxEdge minimizes the longest edge in a
perfect matching.

1: function SCRAM(Gt = (Ut, Vt, Et))
2: At = ∅
3: emax = getMinimalMaxEdge(Et)
4: E′

t = {e ∈ Et|e.dist ≤ emax.dist}
5: At = hungarian(E′

t)
6: for all e = (u, v) ∈ At do
7: u.assigned = True
8: end for
9: Āt = {u ∈ Ut|u.assigned = False}

10: return At, Āt

11: end function

3.4 SCRAM for Minimal Makespan Matching

While, the Hungarian algorithm produces a minimum cost per-
fect matching, it does not consider the “fairness” of the system.
Therefore, some users may face a very long wait time even
though the average is minimized. To avoid this problem, we use
a recent algorithm known as scalable collision-avoiding role as-
signment with minimal-makespan (SCRAM) to find an assign-
ment that minimizes the longest distance that any vehicle must
travel to a passenger. Specifically we implement the Minimum
Maximal Distance + Minimum Sum Distance2 (MMD+MSD2)
variant of SCRAM as proposed by MacAlpine et al. (2015).
SCRAM has previously been applied to formational positioning
in simulated robot soccer – a setting with a small, static number
of agents (11 agents and 11 target destination) (MacAlpine
et al., 2015). In constrast we apply the algorithm to a large,
dynamic, real-world setting.

Given a bipartite graph, Gt = (Ut, Vt, Et), SCRAM first
finds the minimum maximal edge, emax in a perfect matching
from Ut to Vt, which is the minimum makespan for a feasible
matching (Algorithm 3, line 3). Then edges e ∈ Et such
that e.dist > emax.dist are removed from Et. Finally, the
Hungarian algorithm is run on the reduced set Et to find
the minimum cost matching over these edges. The algorithm
also runs in time O(n3). Similar to the Hungarian algorithm,
SCRAM assumes |Ut| = |Vt|, so we make use of dummy
vertices when this assumption does not hold. Pseudocode is
provided in Algorithm 3.

Figure 1f shows the solution SCRAM would find for a small
two user and two vehicle examples. In contrast, the Hungarian
algorithm, Figure 1e, is much less equitable.

4. SIMULATED CARSHARING MODEL

As a testbed we use the agent-based carsharing model proposed
by Fagnant and Kockelman (2014). There are two types of
agents in this simulator: vehicles and users. Vehicles can move
north, south, east, or west to adjacent cells (e.dist is Manhattan
distance). Motion within the cells is not modeled and vehicles
do not interfere with each other’s path. At each time step users
make requests to the system for a vehicle to take them from
their current location to their destination. Time is discretized
into five minute intervals for a total of 288 time steps per day
(0 ≤ t < 288). Each run of the simulation corresponds to one
24 hour day. The model represents a 10 mile by 10 mile city as
a grid of 0.25 mile by 0.25 mile grid cells.

Users requesting vehicles are generated in each grid cell at a
rate that decreases the farther a cell is from the city center. In



V1

U1 V2 U2

(a) Decentralized

V1

U1 V2 U2

(b) Greedy

V1

U1 V2 U2

(c) Greedy

V1

U1 V2 U2

(d) Hungarian

V1U1

V2

U2

(e) Hungarian

V1U1

V2

U2

(f) SCRAM

Fig. 1. These simple examples illustrate the relative advantages
of different algorithms used in the experiments. Each row
depicts a fixed scenario. For each scenario, the subfigure
on the left show a suboptimal solution with one algorithm
and the subfigure on the right show a better solution from a
different algorithm. The bottom row shows how SCRAM
minimizes distance of the longer assignment but not the
total distance traveled.

other words, the center of the city is an area with high user
density and the density falls off towards the edges of the map.
Full details on the process can be found in the paper introducing
the simulator (Fagnant and Kockelman, 2014). Each day sees
approximately 36,000 requests for vehicles.

At each time step t, a matching algorithm attempts to match
users requesting vehicles (Ut) with available vehicles (Vt). If a
user cannot be served they are added to the set of users making
requests at the next time step (Ut+1). If a user cannot be served
after 30 minutes of wait time (six consecutive requests) the user
ceases requests and is counted as unserved. Vehicles that are
low on fuel go to the nearest fueling station (assumed to be
within the same grid cell) and are out of service for two time
steps (10 minutes). Vehicles that are assigned then begin to
move towards the passengers. Vehicles already with passengers
continue to their user’s destination. Each vehicle can move
a fixed number of grid cells per time step depending on the
maximum speed for its location in the grid.

The model has several limitations. The model approximates the
effects of a carsharing system in a relatively small 10 mile by
10 mile urban area. Though car speed has small variations due
to time of day and distance from the city center congestion is
not extensively modelled. While the presence of other modes of
transportation is approximated by the user generation rates and
speed variations, the simulation only explicitly models vehicles
and users of the carsharing service. However, the model has
been used in prior carsharing studies (Fagnant and Kockelman,
2014; Fagnant et al., 2015) and is thus considered a sufficient
simulation for this domain.

5. EXPERIMENTAL RESULTS

The experiments compare the performance of the above algo-
rithms over 100 consecutive days of fleet use. Note the events
of each day affect the next (e.g. vehicles starting position for

Fig. 2. Excess vehicle distance (miles travelled while the vehi-
cle is unoccupied) for each assignment method. Error bars
are for a 95% confidence level.

a given day is the previous day’s ending position), so multi-
ple days are needed to get an idea of system performance. In
these experiments the fleet size is set to 1000 vehicles which
is an experimentally determined value able to serve all users
with any assignment algorithm. It is important that all users be
served in order to make meaningful comparisons. Otherwise, an
assignment strategy could minimize excess distance travelled
by simply not serving passengers that are far from available
vehicles. Initial locations of vehicles are chosen according to
the distribution of user requests over the simulated area. We
run 50 trials of 100 days each for each assignment algorithm.

5.1 Unoccupied Distance Traveled

The first comparison we make is on the average amount of
unoccupied distance travelled by vehicles per day. This metric
demonstrates the efficiency of a given assignment algorithm.
Figure 2 shows the distance traveled (in miles) by unoccu-
pied vehicles. The results show that the more sophisticated
matching approaches, SCRAM and the Hungarian algorithm,
are able to reduce this number by approximately 20 percent
from the baseline decentralized approach and also improve
over the centralized greedy baseline. The Hungarian algorithm
performs better than SCRAM as it solely minimizes the sum of
unoccupied distance traveled, while SCRAM is subject to the
constraint that the solution has a minimum makespan as well.
However, SCRAM only produces one percent more additional
unoccupied distance traveled than the true minimum solution.

5.2 Passenger Wait Time

The next point of comparison is passenger wait time. Wait time
is a combination of how long it takes users to be matched to a
vehicle and how long it takes for the assigned vehicle to reach
the user:

Waittotal = Waitmatching +Waittravel.

For all methods the average wait was less than five minutes (i.e.
on average all users could be assigned a vehicle the first time
they requested one) which means Waitmatching is zero for
most users. The average wait time shows the same relationship
among methods as unoccupied distance traveled so we do not
show results.

While a minimal average wait time is good, we also want
the service to be reliable and predictable for the users. To
characterize reliability we look at variance in the wait time
and the number of users that have to wait longer than given
time thresholds. Results are shown in Figures 3 and 4. First,
the variance results show that both the Hungarian algorithm
and SCRAM reduce variance in the wait time compared to
the greedy approaches. However, SCRAM outperforms the
Hungarian method since minimizing the makespan results in a
smaller range in which user-vehicle distances can fall. Second,
Figure 4 shows that SCRAM is able to minimize the number
of users on average that must wait longer than certain time
thresholds. While SCRAM’s solution has a slightly longer
average wait than the Hungarian algorithm, it spreads that total
wait time out among all of the users instead of concentrating it
among a subset.



Fig. 3. Variance of user wait time for each assignment method.
Error bars are for a 95% confidence level.

Fig. 4. The number of users waiting longer than 5, 10, and 15
minutes for each assignment method. Error bars are for a
95% confidence level.

V1

U1

V2 U2

X

V1

U1 V2

U2

X

Fig. 5. A setting for which U2 can benefit by reporting his
location as X . The optimal solution under SCRAM or the
Hungarian algorithm assigns V 1 toU1 and V 2 to U2. This
results in a total distance of 12 and a makespan of 7. If U1
reports position X then the assignment is reversed. After
three steps U2 can report his true location and maintain
his preferred assignment. This results in a cost of 14 and a
makespan of 10 for both algorithms.

6. STRATEGIC MISREPORTING OF USER LOCATIONS

While all three centralized algorithms (centralized greedy, the
Hungarian algorithm, and SCRAM) are significant improve-
ments to the decentralized greedy matching algorithm in terms
of efficiency and fairness, the additional complexity that allows
for these improvements also comes at a cost of strategic manip-
ulability. Given that any centralized algorithm may potentially
not assign the closest vehicle to a user in order to maintain sys-
tem wide efficiency, a user may be able to strategically misre-
port his location in order to draw a vehicle to him. Specifically,
he can influence the assignment of vehicles by claiming to be
at a location that both increases the likelihood of his preferred
vehicle being assigned to him and having a route that passes
near his true location. Once the vehicle begins to move towards
the false location, the user can cancel the initial request, freeing
up his preferred vehicle, and requesting a new pickup at their
true location. 1 Assuming that the user strategically cancels
their initial reservation, when the assignment is computed again
the user will be assigned the vehicle that has now moved closer
to him.

Figure 5 shows a scenario where, under both the Hungarian
algorithm and SCRAM, if an agent (U2) reports a false location
(X) he will receive a shorter expected wait time at the expense
of system efficiency. While not shown, it is trivial to construct
examples for the centralized greedy algorithm where strategic
misreporting is beneficial as well. This is likely to be a fun-
damental feature of any centralized assignment algorithm, and
therefore, should be considered in the future design of optimal
carsharing systems. Note that the decentralized algorithm is
robust to manipulative behavior because users are guaranteed,

1 We assume that any practical system must allow for cancellation due to

changing one’s mind or circumstances changing.

on a first come first served basis, to be assigned the closest
available vehicle. In the language of game theory, a user truth-
fully reporting his location is a dominant strategy – optimal no
matter what other users may report.

6.1 Restoring Strategy-Proofness with Cancellation Fees

We propose that by introducing cancellation fees, even central-
ized mechanisms such as the Hungarian algorithm and SCRAM
can be designed to ensure mis-reporting is not optimal. It is
necessary to assign a value of time to users in order to penalize
mis-reporting with a monetary payment. In this discussion, we
will assume that all users have the same value of time of one
unit of time for one monetary unit although we could also use a
reasonable upper bound.

When considering cancellation fees, it is important to keep two
points in mind. First, for an infinite grid, no fixed finite can-
cellation fee can guarantee optimality, because we can always
increase the benefit of misreporting by moving users farther
apart. Second, the cancellation fee should be minimal in case
a user has a legitimate need to cancel their request.

We propose setting the cancellation fee equal to Vickery-
Clarkes-Groves (VCG) payments (Vickrey, 1961). VCG pay-
ments, loosely defined (see reference for an in depth discus-
sion), are the difference between the total social welfare not
considering the cancelled user’s utility, and the total social
welfare assuming that the cancelled user had never made his
initial request. Assume that there are n users, and the time, in a
given assignment, for a vehicle to reach each user i ∈ {1, ..., n}
is tci for the case where user j cancels; t∗i if user j had never
reported; and ti if user j had reported truthfully. Then total
social welfare, not including j, is −

∑
i6=j ti, when j reports

and cancels, and −
∑

i6=j t
∗
i if j had never reported. The VCG

cancellation fee would thus be
∑

i6=j ti −
∑

i6=j t
∗
i for user j.

Theorem 1. If there is a VCG cancellation fee, for the Hun-
garian assignment algorithm, no user ever has an incentive to
misreport and cancel.

Proof. Note that the Hungarian algorithm always maximizes
social welfare, −

∑
i ti, so for user j, if he reports truthfully,

he will receive utility −tj . If he lies he will receive a utility
of −trj instead. Therefore, his benefit from cancelling is tj −
trj . His cancellation fee will be

∑
i6=j t

c
i −

∑
i6=j t

∗
i . Note that

−
∑

i ti ≥ −trj −
∑

i6=j t
c
i , otherwise the Hungarian algorithm

would have chosen the assignment reached by j mis-reporting
and cancelling. Also, note that −

∑
i6=j t

∗
i ≥ −

∑
i6=j ti, for the

same reason. Therefore,
∑

i6=j t
c
i −

∑
i6=j t

∗
i ≥

∑
i ti − trj −

∑
i6=j t

∗
i ≥ tj − trj +

∑
i6=j ti −

∑
i6=j t

∗
i ≥ ti − trj . Since the

cancellation fee is greater than or equal to his benefit, no agent
will have an incentive to mis-report.

Note that because SCRAM does not minimize travel time for all
users the fee is not guaranteed to be incentive compatible with
SCRAM. Therefore, we leave a strategy-proof cancellation fee
for SCRAM to future work.

7. CONCLUSION AND FUTURE WORK

We have presented a comparison of methods for assigning ve-
hicles to users for carsharing with autonomous vehicles. Our
experiments show that employing an optimal perfect matching
algorithm can improve performance of a system in terms of
reducing unoccupied travel, decreasing customer wait times,



and decreasing the variance in expected wait time. As expected,
the Hungarian algorithm, by ensuring minimum cost match-
ing, minimizes total wait and unoccupied distance traveled
across the entire system. However, SCRAM, by minimizing
the makespan, reduces variance in the user wait time and the
number of users who have significant waits, making the system
more “fair.” Compared to the two simpler greedy approaches,
both the Hungarian algorithm and SCRAM are significant im-
provements. While a centralized assignment algorithm opti-
mizes the system, strategic users can still manipulate the sys-
tem. We have provided a cancellation fee that provably removes
incentive to manipulate the system for one algorithm, but more
work is needed for other methods.

The current approach is myopic in that it only considers match-
ing at the current timestep. Any of the presented methods could
be adapted to consider vehicles that will soon be available.
One straightforward method would be to represent the vehicle’s
distance to a passenger as the distance from the passenger to the
vehicle destination plus the vehicle’s remaining distance left to
travel. In situations where the fleet size is limited this could
allow the system to directly tell a user if it will be possible to
serve him and how long they would have to wait. Integrating
knowledge of trip completion times with predictions of demand
could further optimize long-term performance of the system.
Finally, prior work has considered rebalancing vehicles not in
use. A limitation of the matching algorithm approach is that
it ignores the need to maintain vehicle balance. We wish to
extend the presented matching algorithms to maintain a supply
of vehicles close to areas likely to have future user requests.

REFERENCES

Acquaviva, F., Nunez, A., Di Paola, D., Rizzo, A., and De Schutter, B.

(2015). Customer-oriented optimal vehicle assignment in mobility-on-

demand systems. In Intelligent Transportation Systems (ITSC), 2015 IEEE

18th International Conference on, 2849–2854. IEEE.

Chen, B. and Cheng, H.H. (2010). A review of the applications of agent

technology in traffic and transportation systems. Intelligent Transportation

Systems, IEEE Transactions on, 11(2), 485–497.

Chow, Y. and Yu, J.Y. (2015). Real-time bidding based vehicle sharing. In

Proceedings of the 2015 International Conference on Autonomous Agents

and Multiagent Systems.

Dresner, K. and Stone, P. (2008). A multiagent approach to autonomous

intersection management. Journal of Artificial Intelligence Research, 31,

591–656.

Fagnant, D. and Kockelman, K. (2014). The travel and environmental impli-

cations of shared autonomous vehicles, using agent-based model scenarios.

Transportation Research Board Part C, 40, 1–13.

Fagnant, D., Kockelman, K., and Bansal, P. (2015). Operations of a shared

autonomous vehicle fleet for the austin, texas market. Transportation

Research Board.

Hausknecht, M., Au, T.C., Stone, P., Fajardo, D., and Waller, T. (2011).

Dynamic lane reversal in traffic management. In Proceedings of IEEE

Intelligent Transportation Systems Conference (ITSC).

Kamar, E. and Horvitz, E. (2009). Collaboration and shared plans in the open

world: Studies of ridesharing. In 20th International Joint Conference on

Artificial Intelligence (IJCAI).

Kleiner, A., Nebel, B., and Ziparo, V. (2011). A mechanism for dynamic ride

sharing based on parallel auctions. In 22th International Joint Conference

on Artificial Intelligence (IJCAI), 266–272.

Kuhn, H.W. (1955). The hungarian method for the assignment problem. Naval

research logistics quarterly, 2(1-2), 83–97.

Lee, D.H., Wu, X., and Sun, L. (2013). Limited information-sharing strategy for

taxi-customer searching problem in nonbooking taxi service. Transportation

Research Record: Journal of the Transportation Research Board, (2333),

46–54.

MacAlpine, P., Price, E., and Stone, P. (2015). Scram: Scalable collision-

avoiding role assignment with minimal-makespan for formational position-

ing. In AAAI Conference on Artificial Intelligence (AAAI).

Seow, K.T., Dang, N.H., and Lee, D.H. (2007). Towards an automated

multiagent taxi-dispatch system. In Automation Science and Engineering,

2007. CASE 2007. IEEE International Conference on, 1045–1050. IEEE.

Vickrey, W. (1961). Counterspeculation, auctions, and competitive sealed

tenders. The Journal of Finance, 16(1), 8–37.

Zhang, R. and Pavone, M. (2016). Control of robotic mobility-on-demand

systems: a queueing-theoretical perspective. The International Journal of

Robotics Research, 35(1-3), 186–203.

Zhang, R., Spieser, K., Frazzoli, E., and Pavone, M. (2015). Models, algo-

rithms, and evaluation for autonomous mobility-on-demand systems. In

American Control Conference (ACC), 2015, 2573–2587. IEEE.


