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Abstract
In recent years, the automotive industry has been
rapidly advancing toward connected vehicles with
higher degrees of autonomous capabilities. This
trend opens up many new possibilities for AI-based
efficient traffic management. This paper investi-
gates traffic optimization through the setting and
broadcasting of dynamic and adaptive tolls under
the assumption that the cars will be able to contin-
ually reoptimize their paths as tolls change.
Previous work has studied tolling policies that re-
sult in optimal traffic flow and several traffic mod-
els were developed to compute such tolls. Unfortu-
nately, applying these models in practice is infeasi-
ble due to the dynamically changing nature of typ-
ical traffic networks. Moreover, this paper shows
that previously developed tolling models that were
proven to yield optimal flow in theory may not be
optimal in real-life simulation. Next, this paper in-
troduces an efficient tolling scheme, denoted ∆-
tolling, for setting dynamic and adaptive tolls. We
evaluate the performance of ∆-tolling using a traf-
fic micro-simulator. ∆-tolling is shown to reduce
average travel time by up to 35% over using no tolls
and by up to 17% when compared to the current
state-of-the-art tolling scheme.

1 Introduction
In recent years, communication and computation capabili-
ties have become increasingly common onboard vehicles.
Such capabilities present opportunities for developing safer,
cleaner and more efficient road networks. This paper com-
bines knowledge from mechanism design, game theory, net-
work flow optimization, and multi-agent simulations for in-
vestigating responsive pricing, as a scheme for managing and
optimizing traffic flow.

It has been known for nearly a century that drivers seek-
ing to minimize their private travel times need not minimize
the total level of congestion. In other words, self-interested
drivers may reach an equilibrium that is not optimal from a
system perspective. On the other hand, charging each agent
with an amount equivalent to the damage it inflicts on all

other agents (also known as the marginal cost) results in opti-
mal flow [Pigou, 1920; Beckmann et al., 1956; Braess, 1969].
The damage inflicted by a given agent is evaluated through
the marginal slowdown caused by it and is commonly evalu-
ated using stylized traffic models. Such stylized models take a
“macroscopic” view of traffic, where delay can be expressed
as a smooth function of travel demand. We hereafter refer
to such models as macro-models. The marginal slowdown,
evaluated by such models, is then used to infer appropriate
tolls. However these macro-models make many approxima-
tions and assumptions that don’t hold in practice.

Modern simulation tools and computational power allow
for much more fine-grained simulation of traffic networks,
referred to as micro-simulation models. Using such a real-
istic traffic simulator we demonstrate the potential of using
tolls for reducing average travel time and increasing aver-
age utility. In this paper we show (empirically) that comput-
ing tolls using a macro-model does not lead to optimal per-
formance in a realistic simulator. We explain this effect by
noting that macro-models assume deterministic conditions,
and have a number of unrealistic features. In recent years,
researchers have relaxed the assumptions of the first macro-
scopic tolling models to incorporate responsiveness to road-
way disruptions such as accidents [de Palma and Lindsey,
1998; Yang, 1999a,b; Lindsey, 2009; Boyles et al., 2010]
and to the total level of travel demand [Nagae and Aka-
matsu, 2006; Chen and Subprasom, 2007; Gardner et al.,
2008, 2011]. However, the effectiveness of all of these models
is still restricted by the use of simplifying assumptions such
as constant and known demand and capacity for each link.

In response to the suboptimal performance of existing
macro-models, this paper introduces a novel tolling scheme
denoted ∆-tolling. ∆-tolling approximates the marginal cost
of each link using only two variables (current travel time and
free flow travel time) and one parameter. Due to its simplicity,
∆-tolling is fast to compute, adaptive to current traffic, and
accurate. We prove that, under some assumptions, ∆-tolling
results in tolls that are equivalent to the marginal cost and
demonstrate that it can lead to near-optimal performance in
practice.

2 Motivation
This section defines the notion of user equilibrium (UE) and
system optimum (SO). Applying tolls is then introduced as a



mechanism that allows UE and SO to coincide. The marginal
cost toll (MCT) policy is then presented followed by some
macroscopic traffic models that approximate it. We discuss
some of the drawbacks of such macro-models, which pro-
vides the motivation for the current study.

2.1 Computing User Equilibrium
Consider a directed network G = (V,E), where V and E
are the set of nodes and links respectively. Suppose that the
demand (flow rates) between every pair of nodes is known.
In this paper we assume that the travel time on a link e ∈ E
is a function of its flow (xe) and is represented using a non-
decreasing function te(xe) (also called volume delay or link-
performance functions). In practice, the Bureau of Public
Roads (BPR) function te(xe) = Te(1 + α( xeCe )β) is com-
monly used as the delay function, where Te is the free flow
travel time and Ce is the capacity of link e. α and β are pa-
rameters whose default values are 0.15 and 4 respectively.

When agents choose routes selfishly, a state of equilibrium,
called user equilibrium (UE) [Wardrop, 1952], is reached in
which all used routes between an origin-destination (OD) pair
have equal and minimal travel time. The link flow rates corre-
sponding to this state can be obtained by solving a non-linear
convex program that minimizes the Beckmann potential func-
tion (

∑
e∈E

∫ xe
0
te(xe) dx) Beckmann et al. [1956]. This ob-

jective ensures that the KKT (Karush-Kuhn-Tucker) condi-
tions [Kuhn and Tucker, 1951; Karush, 1939] of the convex
program correspond to Wardrop’s UE principle [Wardrop,
1952]. The constraints of the optimization problem include
non-negativity and flow conservation constraints. This model,
also known as the traffic assignment problem (see Patriksson
[1994] for a thorough overview), has been widely studied be-
cause of the mathematically appealing properties associated
with convex programming.

2.2 Computing System Optimum
The system optimal (SO) problem can be formulated using
a set of constraints similar to those used for computing UE
but replacing the objective function with

∑
e∈E xete(xe). As

mentioned before, all agents do not experience equal and min-
imal travel times at the SO state which incentivizes agents to
switch routes. Instead, if an optimal tolling policy is applied,
the flows resulting from a UE assignment in which agents
minimize the generalized cost (time + toll) coincides with the
SO solution. MCT is proven to be such a policy (UE=SO)
[Pigou, 1920; Beckmann et al., 1956; Braess, 1969]. In MCT
each agent is charged a toll that is equal to the increase in
travel time it inflicts on all other agents. Unfortunately, know-
ing in advance the marginal impact of an agent on traffic is
infeasible in practice.

2.3 Approximating Marginal-Cost Tolls
The focus of this paper is methods that approximate the
marginal cost. Most of these methods assume that demand
on each link is constant. In such cases MCT can be formally
defined as follows: given a link (e) and flow (xe) the toll ap-
plied to e equals the change in travel time caused by an in-
finitesimal flow (dte(xe)dxe

) multiplied by the number of agents
currently on this link (xe).

A number of researchers have attempted to develop macro-
models that approximate MCT for a given system [Yang et
al., 2004; Han and Yang, 2009]. However, a major drawback
of such macro-models is that they are static and do not capture
the time-varying nature of traffic. They also assume that the
delay on each link is a function of its flow and hence neglect
effects of intersections and traffic shocks. Although there has
been some research on congestion pricing using finer traffic
flow models, most of the existing models either assume com-
plete knowledge of demand distribution over time [Wie and
Tobin, 1998; Joksimovic et al., 2005] or are restricted to find-
ing tolls on freeways in which travelers choose only between
parallel tolled and free general-purpose lanes [Gardner et al.,
2013, 2015; Yin and Lou, 2009]. This limitation motivates
us to employ a simulation framework to replicate traffic in a
more realistic manner, evaluate the performance of existing
macro-models, and develop new methods to determine opti-
mal tolls while adapting to unknown and changing demand.

3 Simulation
In order to evaluate the effectiveness of different tolling mod-
els on traffic flow optimization, we used a modified ver-
sion of the Autonomous Intersection Manager (AIM) micro-
simulator [Dresner and Stone, 2008]. On the one hand, AIM
is very realistic in the sense that it allows simulating accel-
erations of individual vehicles in response to traffic condi-
tions. On the other hand, due to computational limitations,
AIM cannot scale to large road networks (only up to 3 × 3
grid network). For our experiments AIM was chosen since,
unlike other simulators, it allows non deterministic traffic be-
havior, provides (direct) measurements on vehicle following
distances, lane changes, gap acceptance, etc.

3.1 Autonomous Intersection Manager Simulator
AIM provides a multiagent framework for simulating au-
tonomous vehicles on a road network grid; it presents a realis-
tic traffic flow model that allows experimenting with adaptive
tolling. The AIM simulator uses two types of agents: inter-
section managers, one per intersection, and driver agents, one
per vehicle. Intersection managers are responsible for direct-
ing the vehicles through the intersections, while the driver
agents are responsible for controlling the vehicles to which
they are assigned. To improve the throughput and efficiency
of the system, the driver agents “call ahead” to the inter-
section manager and request a path reservation (space-time
sequence) within the intersection. The intersection manager
then determines whether or not this request can be met. If the
intersection manager approves a driver agent’s request, the
driver agent must follow the assigned path through the inter-
section. On the other hand, if the intersection manager rejects
a driver agent’s request, the driver agent may not pass through
the intersection but may attempt to request a new reservation.

At every intersection, the driver agent navigator runs anA∗
search [Hart et al., 1968] to determine the shortest path lead-
ing to the destination of the vehicle associated with it. The
navigator then directs the driver agent to drive via the shortest
route. This behavior ensures that each vehicle acts greedily
with respect to minimizing travel time. Next, we describe the



required enhancements to the standard AIM simulator [Dres-
ner and Stone, 2008] necessary to simulate realistic tolling
experiments.

3.2 Enhancements to the AIM Simulator
In order to evaluate adaptive-tolling using AIM the following
modifications were required:

• Link toll: each link (e) in the road network is associated
with a toll, tolle, which can adapt in real-time according
to traffic conditions.

• Link travel time: each link stores: (1) an estimated
travel time, te, that is based on real-time observed flow
speed, and (2) an estimated free flow travel time Te, that
is based on the link’s length divided by its speed limit.

• Route selection: when a car has several routes leading
to its destination, the driver agent chooses the route (r =
e1, e2, ..., e3) that minimizes

∑
e∈r te × V OT + tolle,

where V OT is the monetary value Of time.
• Value Of Time: each driver agent is associated with

a randomly generated V OT that is drawn from a nor-
mal distribution. We assume monetary units are chosen
such that the mean value is 1¢ per second, and assume
a standard deviation of 0.2. V OT represents the value
(in cents) of one second for the driver. A driver with
V OT = x is willing to pay up to x¢ in order to reduce
travel time by 1 second.

3.3 Macroscopic Model
This paper uses a macroscopic model to approximate MCT.
This model is used to solve the convex program described
in Section 2 using Algorithm B [Dial, 2006]. Algorithm B is
a bush-based/origin-based algorithm which exploits the fact
that at equilibrium, all used routes carrying demand from a
particular origin must belong to an acyclic subgraph in which
each destination can be reached from the origin (such a sub-
graph is also called a bush). At each iteration, the algorithm
maintains a collection of bushes (one for each origin), shifts
agents within a bush to minimize their generalized costs, and
adds/removes links in a bush until equilibrium is reached.
Closeness to equilibrium is measured using average excess
cost, which represents the average of the difference between
each agent’s generalized cost and the least cost path at the
current flow solution. In the experiments presented in this pa-
per, the algorithm was terminated when the average excess
cost of the flow solution dropped below 1E-13.

4 Empirical Evaluation: Macroscopic Model
One of the main contributions of this paper is an empirical
demonstration that setting tolls based on macro-models can
lead to suboptimal results when evaluated in a more realistic
micro-simulator. This section presents these empirical results,
which motivate our new tolling scheme as presented in the
next section.

4.1 Exemplar Road-Network
Figure 1 illustrates an exemplar road network that demon-
strate the impact of tolls that adapt to traffic demand. The

Figure 1: Exemplar road network within the AIM simulator.

speed limit across all roads is 25 meters per second. Each
horizontal road is 142 meters long, and each vertical road is
192 meters long. We examined a scenario in which agents en-
ter the network from a single source, the top road (incoming
arrow), and leave the network from one of two destinations
(outgoing arrows) D1 or D2. All roads are composed of two
lanes per direction and assumed to have infinite capacity1 ex-
cept the two vertical roads in the middle of the network (Con-
gestible link #1 and #2), which possess only one lane (capac-
ity = 1,908 agents per hour). An agent entering the system
and heading towards D1 (or symmetrically D2) has two pos-
sible routes to choose from: a short route (668 m) or a long
route (964 m). Each agent chooses one of the two routes ac-
cording to the distance, traffic conditions, and tolls associated
with it. This road network represents a special case where if
most agents are heading to D1 (or symmetrically D2) then
link #1 (#2) should be tolled while link #2 (#1) should not.
We define z (or symmetrically 1 − z) to be the proportion of
agents heading to D1 (D2). The incoming traffic rate was set
to 2,160 agents per lane per hour.

4.2 Computing the Optimal Tolls
First, we computed, in a brute-force manner, the toll
values that optimize average travel time for each z ∈
{0.0, 0.1, 0.2, ..., 1}. We considered tolling only congestible
link #2. Tolling uncongestible links is unnecessary as there
is no congestion externality associated with travel on these
links. Moreover, there is no reason to toll both congestible
links simultaneously (#1 and #2) since any of the two possi-
ble routes (leading from source toDi) includes exactly one of
these links. A negative toll value for link #2 is symmetrical to
a positive toll on link #1. We distinguish between the optimal
adaptive toll and the optimal static toll. The optimal adaptive
toll is the toll value that minimizes travel time for a given z
value. The optimal static toll is the toll value that minimizes
travel time over all z values (assuming equal weighting of the
z values, i.e., all z values have the same probability), found to

1The capacity on roads with two lanes is higher than the rate in
which agents are spawned. Hence, we consider such roads as having
infinite capacity.



Toll Values AVG Travel Time (seconds)
z Optimal Macro Model No Tolls Static Tolls Optimal Tolls Macro Tolls ∆-Tolls

0.0 15 14.8 46.0 47.6 40.9* 40.3* 40.5*
0.1 10 14.8 43.2 45.1 39.1* 39.3* 39.0*
0.2 10 14.8 38.4 40.8 35.8* 38.4 36.9*
0.3 10 14.8 34.3 35.1 33.8 37.7 33.1*
0.4 0 14.8 31.7 32.4 31.7 36.8 31.4
0.5 5 -5.3 30.8 31.2 30.8 30.9 30.9
0.6 5 -14.8 31.1 31.5 31.1 34.7 31.6
0.7 -5 -14.8 32.2 32.2 32.2 35.2 32.8
0.8 -10 -14.8 37.0 34.1* 34.1* 36.2 35.8*
0.9 -10 -14.8 40.7 36.2* 36.2* 36.8* 36.5*
1.0 -15 -14.8 43.1 39.0* 38.5* 38.1* 38.7*

Table 1: The left side of the table shows the empirical optimal and macro-model predicted toll values (imposed on link #2) for
different z values. The right side shows average travel times when no tolls, static tolls, optimal tolls, macro-model tolls and
∆-tolls are applied as calculated by the AIM simulator. * indicates statistical significance over no tolls (using unpaired t-test
with pvalue = 0.05).

be −10 in this example. While it might seem like the optimal
static toll should be zero, asymmetries in the model arising
from differences between left and right turns affect junction
delays and skew the optimal static toll to one side.

Optimal adaptive tolls for each z value are presented in Ta-
ble 1. Notice that as the z value increases, the optimal toll
steadily decreases. Intuitively, when all agents go to one des-
tination (z = 0 or z = 1) we need more of them to choose
the longer route to achieve the optimal system flow, thus re-
quiring a more extreme toll. When z ≈ 0.5, a zero toll is
optimal since agents that choose their longer route will only
make congestion worse for agents going to the other destina-
tion. As a result, enforcing tolls for 0.2 < z < 0.8 did not
result in a significant improvement over enforcing no tolls.
The reason that Table 1 present values different than zero for
that range stems from noise and asymmetries in the model.

4.3 Evaluating Optimal Tolls Using a
Macro-Model

We compared the empirically optimal tolls against the toll
values predicted by the macro-model. Toll values calculated
by the macro-model are also presented in Table 1. Table 1
also presents average travel time under different tolling poli-
cies (for now ignore the ∆-tolls column). Though the macro-
model obtains near optimal results for the extreme z values
and z = 0.5, it is sub-optimal for intermediate values. One
explanation for this phenomenon is that the stylized conges-
tion models assume that delays on a link are a function solely
of flow on that link, ignoring interactions between links at in-
tersections. For the extreme z values this assumption is more
reasonable because almost all agents on congestible links are
heading in the same direction. However for the intermediate
values (excluding 0.5) the agents on the congestible links en-
counter traffic on the bottom horizontal link (by cars taking
the longer route) causing changes in the capacity of the con-
gestible links that cannot be captured by a stylized model.
These results lead us to the following conclusions:

1. Tolls can reduce average travel time by up to 11% com-
pared to applying no tolls (see z = 0).

2. Static tolls might have a negative effect in some cases
(see z < 0.6).

3. The macro-model fails to achieve system optimal in
some cases reaching up to 10% suboptimality (see z =
0.3).

Both static and adaptive macro-model based tolls (a) result
in suboptimal performance and (b) require that the demand
over all OD pairs is known and fixed. As a result, neither is
applicable to real-world traffic. There is thus, a need for a
new tolling scheme that is dynamic, adaptive, and results in
near-optimal traffic flow.

5 Delta-tolling
This section introduces the main technical contribution of the
paper, a new tolling scheme denoted ∆-tolling. Unlike macro-
scopic models, ∆-tolling is adaptive to unknown and chang-
ing link capacities and demands. We first define ∆-tolling and
then prove, under mild assumptions, that it is equivalent to
MCT.

∆-tolling is defined over a directed networkG = (V,E) (a
road network for example) with a set of current flow values
(traffic volume for example). The output of ∆-tolling is a set
of toll values, one toll value per link. We use te to denote
the current flow time on link e ∈ E. Recall that Te denotes
the free flow travel time and tolle to denote the toll value
assigned to link e. For each link (e), ∆-tolling assigns a toll
equivalent to the difference between the current flow time (te)
and the free flow time (Te) multiplied by a parameter (β).
More formally: ∆-tolle = β(te − Te). As a rule of thumb, β
should be correlated to the mean VOT. High β values result
in high toll values which are needed to influence agents with
high VOT. Calculating ∆-tolle requires a constant amount of
time. As a result, the complexity of computing tolls for an
entire network is Θ(E).

Next we prove that ∆-tolling is equivalent to MCT under
some conditions. This is a desirable property, since MCT re-
sults in system optimal (see Section 2). First, we list the as-
sumptions under which the above statement holds:



Macro-model ∆-tolling
Parameters Required
α yes no
β yes yes
Variables Required

Demands yes no
Ce yes no
Te yes yes
te no yes
Properties Satisfied
Adaptive no yes
MCT yes yes

Table 2: The different parameters, variables and properties of
∆-tolling and macro-model tolling. MCT refers to approxi-
mating the marginal cost.

1. The delay on each link is expressed by the BPR volume
delay function, te(xe) = Te(1 + α( xeCe )β).

2. Changes in traffic flow are negligible between the time
an agent plans its route and the time it traverses the net-
work.

Lemma 1 Under the above assumptions, the tolls computed
by ∆-tolling are equivalent to the MCT.

Proof: We express the BPR volume delay function as:
(1) te(xe) = Te + axe

β where a = Te
α

Ce β
. MCT is defined

as the derivative of the delay function (dte(xe)dxe
) multiplied by

the flow (xe). Calculating MCT requires knowing the future
flow but under Assumption 2 we can use current flow instead.
So we get:
(2) MCTe = xe

dte(xe)
dxe

= xe(βaxe
β−1) = βaxe

β =

β(Te + axe
β − Te).

Combining (1) and (2) we get:
MCTe = β(te − Te) = ∆-tolle. �

The main theoretical differences between ∆-tolling and
macroscopic models are summarized in Table 2. In the next
section we study the differences in performance using the
adapted AIM simulator.

Although the assumptions made in this section might not
hold in all possible traffic networks, we provide experimen-
tal results showing that in realistic simulations, ∆-tolling im-
proves traffic flow and may achieve near optimal flow.

6 Empirical Evaluation: Delta-Tolling
This section analyzes the performance of ∆-tolling on a rep-
resentative road network. We then generalize our findings and
show they also hold for randomly generated networks. We
begin by comparing the system performance when using ∆-
tolling on the exemplar road network (presented in Figure 1).
Table 1 also presents the average travel time for ∆-tolling.
Unlike the macro-model, ∆-tolling achieves performance that
is similar to the optimal. We do not report the toll values for
∆-tolling as they are dynamically changing across the simu-
lation.

Next, we present results for larger networks. In such net-
works finding the optimal tolls in a brute force manner is

infeasible.2 For the following experiments we used grid net-
works of size 3×3 that include 9 intersection (see Figure 3 for
an example). Agents enter at the same rate of 300 agents per
hour from any incoming lane (a road with three lanes, for ex-
ample, spawns 900 agents per hour). Each agent entering the
system is assigned one of two possible exit roads with equal
probability (0.5). Each agent is also assigned two alternative
exits. Exiting via an alternative exit imposes a predefined,
randomly generated, delay.3 We justify allowing alternative
exits as follows, in many real-life scenarios, several routes,
usually of different length, may lead an agent to its destina-
tion. For example, a driver exiting Manhattan and heading
to Queens will prefer to exit via Queens Midtown Tunnel, it
can suffer some delay and exit from Ed Koch Queensboro
Bridge or suffer a severe delay while exiting via Williamsburg
Bridge. Following this logic, we view the simulated network
as part of a larger road network in which agents may use paths
outside of the network to reach their final destination.

Some roads in the simulated network are more congestible
than others i.e., the number of lanes varies. The number of
lanes for each road was randomly picked from [1, 4]. We ran
the simulator for 5000 seconds for each reported setting.4 In
the following experiments we used an upper bound on toll
values equal to 25¢.5 The upper bound is set for two reasons:
(1) avoiding overcharging in links with temporary heavy con-
gestion (2) avoiding oscillation in congestion caused by over-
pricing: heavy congestion may cause a steep increase to the
toll value which later leads to the link being vacated which
leads the toll value to reduce to zero. Zero toll value results,
again, in heavy congestion. Applying no cap on toll values
resulted in up to 5% reduced utility. We report three different
measurements:

• Time - the average travel time.

• Utility - the average utility (in cents). Where utility is
defined for each agent as its travel time multiplied by its
VOT plus the summation of tolls paid by it.

• Standardized Utility (SU) - toll revenue may be redis-
tributed back to the drivers in the form of road improve-
ments or tax reductions. We define refund as the sum of
collected tolls divided by the number of agents that ex-
ited the system. SU is defined as average utility minus
refund.

6.1 Representative Road Network
The purpose of our first experiment is to determine how dif-
ferent β values affect system performance. For this experi-
ment we used a single randomly generated instance of a 3×3

2Examining different combinations of toll assignment to all links
in the system leads to an exponential blowup.

3When each agent is assigned only one possible exit, distribut-
ing traffic becomes impossible in many cases. For such scenarios,
imposing tolls did not have a positive effect in our experiments.

4When running the simulator, in order to allow the system to
balance, we exclude data from the first 500 seconds.

5The output from the macro-model contained no toll greater than
25¢. Hence we deduced that greater tolls won’t have a positive affect
and we set the cap accordingly.



Figure 2: Average travel time, utility and standardized utility as a function of β for the representative road network.

Figure 3: A representative road network. Each agent is as-
signed one of to destinations (D1, D2). A1 and A2 denote
alternative destinations for D1 and D2 respectively. The time
penalty associated with each alternative destination is given
in parenthesis.

road network - depicted in Figure 3. Average travel time, Util-
ity and SU for different β values are presented in Figure 2.
Notice that β = 0 represent the case where no tolls are used.

Setting β = 80 gives an improvement of 35% in average
travel time over no tolls. β = 80 also gives an improvement
of 35.01% for SU over no tolls. β values greater than 80 result
in average travel times that are not significantly worse or bet-
ter. Increasing β (up to 80) results in higher toll values which
better distribute congestion. However, higher tolls also nega-
tively impact utility as drivers are forced to pay more. Utility
is maximized with β = 8 which gives a 6.96% improvement
over no tolls. We also report performance when tolls as com-
puted by the macro-model are used, given as a dashed (red)
line across the result graphs. ∆-tolling outperforms macro-
model tolling for β ≥ 4 by up to 18% in both average travel
time and SU. On the other hand, macro-model tolling ex-
ceeds by 6.25% when utility is considered. The main rea-
son for the macro-model’s advantage w.r.t utility is that ∆-
tolling imposes higher toll values. ∆-tolling (with β = 8)
collected a total of $1,921 while macro-model tolling col-

β Time Utility SU
0.0 69.9 -70.0 -70.0
8.0 51.4* -63.5 -51.1*

20.0 50.3* -67.0 -49.8*
80.0 49.5* -76.6 -48.8*

Table 3: Average travel time, utility, and SU for β values
8, 20, 80. These β values represent a trade-off between the
three metrics. *Denotes a statistically significant improve-
ment over no tolling (using a paired t-test with pvalue =
0.05).

lected only $825. Unfortunately, we observed that higher tolls
are required to better distribute congestion and optimize sys-
tem performance. On the other hand, we believe that standard
utility is a more relevant measurement for performance com-
parison between the models. In real road networks tolls are
most often used to fund road maintenance, effectively redis-
tributing the money collected back to the public. When SU is
considered, delta tolling significantly outperforms the macro-
model in all but very low β. Moreover, macro-model tolling
relies on static traffic conditions and so, unlike ∆-tolling it is
not applicable to real-life, dynamic road networks.

6.2 General Case

In order to validate that the results obtained from a single ran-
domized instance are representative, we reran the same exper-
iment using 50 different randomized road networks. Each of
these networks is a 3 × 3 grid, similar to the representative
road network, but the exit roads, alternative exits, alternative
exits’ delay, and number of lanes per road are randomized.
Table 3 shows results for three representative β values (8, 20,
80) compared to no tolling. β = 8 and β = 80 are chosen
since they maximized performance with respect to utility and
travel time/SU. β = 20 represents a good balance between
utility and travel time.

We observe that the advantage of ∆-tolling is robust to
changes in network topology. For the general case, ∆-tolling
achieves an improvement over no tolling of 29.2%, 9.31%
and 30.28% in Time, Utility and SU respectively.



7 Conclusions
This paper considers applying tolls to road networks in order
to direct the route choice of self-interested agents towards a
system optimal. The notion of such a tolling scheme is be-
coming more practical as cars are becoming increasingly au-
tonomous and the computational effort required to evaluate
several alternative routes is becoming more feasible.

This paper makes two main contributions. First, using a
traffic micro-simulator (AIM), we provide empirical evidence
suggesting that stylized macroscopic traffic models are un-
able to approximate optimal tolls accurately. Given this find-
ing and the fact that such models require full knowledge of
demand and supply and assume that these remain fixed, we
conclude that using such models to set tolls in real-life road
networks is impractical. This conclusion leads us to the sec-
ond contribution, the presentation and evaluation of a new
tolling scheme, denoted ∆-tolling. We provide theoretical
and empirical evidence that ∆-tolling results in near-optimal
system performance while being adaptive to traffic conditions
and computationally feasible.

Our ongoing research agenda includes evaluating the per-
formance of ∆-tolling in dynamic environments, in which
traffic demand and supply is time varying.
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