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Abstract

The computational burden of numerical barrier option pricing is significant, even
prohibitive, for some parameterizations—especially for more realistic models
of underlying asset behavior, such as jump diffusions. We extend a binomial
jump diffusion pricing algorithm into a trinomial setting and demonstrate how an
adaptive mesh may fit into the model. Our result is a barrier option pricing method
that employs fewer computational resources, reducing run times substantially. We
demonstrate that this extension allows the pricing of options that were previously
computationally infeasible and examine the parameterizations in which use of the
adaptive mesh is most beneficial.

JEL Classification: G13, G19

I. Introduction

Substantial progress has been made in developing empirically valid derivatives
pricing models, primarily by allowing for more realistic behavior of the underlying
asset, such as the Press (1967) jump-diffusion model. Although Merton (1976) first
priced European options where the underlying asset followed this process, lattice
structures allowing convergent approximations to the values of American options
have been only recently presented. Though appropriately specified binomial trees
and similar models do converge to the correct values for barrier options when the
underlying follows a jump process, accurate convergence may take a prohibitively
long time. We extend the adaptive mesh model of Figlewski and Gao (1999a) to
the jump-diffusion binomial framework of Hilliard and Schwartz (2005), thereby
improving the computational efficiency of the solution method for the pricing

The authors would like to thank Gerald Gay (the editor), Ajay Subramanian (the referee), Joseph
Albert, Mark Bertus, Harry Reif, and Young Choi, as well as participants in the James Madison University
finance workshop and the 2006 Southern Finance Association meetings.

381



382 The Journal of Financial Research

of barrier options. We achieve a 60-fold decrease in the run time of the model
for close-to-the-barrier knockout options and price some options for which lattice
solutions were previously unattainable. This study contributes to the literature both
by demonstrating this extension and by revealing a relation that describes under
which circumstances the adaptive mesh procedure is most valuable. In particular,
the adaptive mesh implementation is most beneficial when the stock price is close
to the barrier, when the volatility of the “smooth” component of the jump process
is large, and when there is a long time until the expiration of the option.

The jump-diffusion model allows for a density of log asset returns that better
resembles the skewness and kurtosis observed in some markets. Amin (1993) and
Hilliard and Schwartz (2005) present lattice models capable of pricing a wide variety
of options on this process. The model in Hilliard and Schwartz can effectively
accommodate a wide variety of parameter specifications, notably providing greater
accuracy than previously possible when the volatility of the jump is high. The
authors demonstrate the effectiveness of their bivariate binomial technique for
approximating the price of European and American options, as well as the associated
hedging parameters. They leave inquiry into exotic options, such as barrier options,
for future research.

Continuously monitored barrier options, however, have proven difficult
to price accurately via a binomial method, even in a simpler geometric Brownian
motion (GBM) setting (Boyle and Lau 1994).1 The pricing of barrier options is
an important issue, however. There is a large market for barrier options, notably
in currencies. Furthermore, Brockman and Turtle (2003) find evidence that down-
and-out calls may be the appropriate way to value corporate equity, and Broadie
and Kaya (2007) present a binomial model where the pricing of debt has barrier
option characteristics.

Even with simple characterizations of the underlying asset, the run time
necessary for lattice models to accurately converge to barrier option values may ren-
der the models not useful, or even impossible, to implement. For example, Figlewski
and Gao (1999a) demonstrate that the implementation of one efficiency-enhancing
modification (provided by Ritchken 1995) with a reasonable parameterization (in
a world where the stock follows GBM) requires a trinomial tree of almost 100,000
time steps to price a down-and-out call option. Figlewski and Gao introduce adaptive
mesh modeling to address this difficulty. They demonstrate a dramatic reduction
in computational time using this technique.

We demonstrate that the computational cost of similar problems are even
greater in a setting such as that of Hilliard and Schwartz (2005). However, the

1When the underlying asset follows GBM, Andricopoulos et al. (2003, 2007) provide a technique
(referred to as QUAD) to value discretely monitored barrier options based on quadrature methods. The
effectiveness of the procedure when the barrier is continuously monitored has not been studied and is a
situation in which the QUAD procedure is likely to exhibit significantly reduced efficiency, and neither has
that method been explored in the context of jump processes.
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extension of the adaptive mesh into a jump-diffusion setting is not immediately
apparent. We present an extension of the adaptive mesh technology for the pricing
of continuously monitored barrier options to the jump-diffusion pricing model of
Hilliard and Schwartz. Finally, we analyze the circumstances in which this extension
is most useful to the practitioner.

II. The State of Barrier Option Pricing

The difficulty of pricing barrier options with standard lattice techniques is well
established in the literature. Consider the standard assumption of GBM where the
underlying asset follows the process

d S

S
= (r − d) dt + σdz, (1)

where S is the price of the underlying asset, dS is changes in this asset price, r is the
continuously compounded rate of interest, d is a proportional dividend yield con-
tinuously paid by the underlying asset, σ is a volatility parameter, dt is the change
in time, and dz is standard Brownian motion. When this process determines fluctu-
ations in the asset price, the price of many exotic options have quasi-closed-form
solutions. Because of this, the GBM assumption provides a convenient laboratory
to examine lattice methods.

The crux of the pricing difficulty concerning barrier options is the severe
nonlinearity between the value of the option on the barrier and its value when
the underlying asset approaches but does not cross the barrier. As Boyle and Lau
(1994) demonstrate, this feature creates a barrier option price convergence pattern
that exhibits wide swings from the true price as time steps are increased on a
binomial tree. In the context of trinomial trees, Ritchken (1995) demonstrates this
same phenomenon and provides a method to help mitigate the problem.

Beginning with an initial log asset price in a standard trinomial tree, upticks
and downticks are taken to be symmetric. Therefore at time �t an uptick yields an
asset price of ln(S) + h, and a downtick yields a value of ln(S) − h. The middle
tick leaves the asset price unchanged. Here, we follow the method of Ritchken
(1995) and set the magnitude of h outside of the model. The tick probabilities
are determined by solving a set of moment-matching equations that restrict the
summation of the probabilities to equal 1. We therefore have

E(ln(S(t + �t) − ln(S(t)) =
(

r − d − σ 2

2

)
�t = puh + pm0 + pd(−h)

E([ln(S(t + �t) − ln(S(t)]2) = σ 2�t = puh2 + pm0 + pd(−h)2 (2)

1 = pu + pm + pd,
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and h given. The solution to these equations yields:

pu =

(
r − d − σ 2

2

)
�t

2h
+ σ 2�t

2h2

pm = 1 − pu − pd

pd = σ 2�t

2h2
−

(
r − d − σ 2

2

)
�t

2h

(3)

Substitution for pm in equation (3) gives,

pm = 1 − σ 2(�t)

h2
. (4)

We may eliminate the possibility of negative probabilities by defining a free pa-
rameter � > 1 such that

� = h2

σ 2(�t)
, (5)

and allow this equation to implicitly set the relationship between h and �t. Evidence
indicates that � = 3 provides nice convergence properties for trinomial trees,
and we follow Figlewski and Gao (1999a) in assuming this value for subsequent
examples.

The Ritchken (1995) contribution is to demonstrate that choosing h to
produce an integer number of time steps between the log asset price and barrier
price can improve the trinomial algorithm in pricing barrier options (this selection
requires small modification in � for �t to be such that time may be discretized into
an integer number of time steps). As Figlewski and Gao (1999a) demonstrate, the
effectiveness of the Ritchken technique reaches a computational boundary as the
asset price approaches the barrier. Consider the pricing of a down-and-out call with
a knock-out barrier of 50 with the following parameters: S = 50.15, r = .05, d = 0,
and σ = .25. Following the logic of Figlewski and Gao, the largest h that permits
a single downtick before hitting the barrier is h = ln(50.15) – ln(50) = .002996.
For � = 3, this implies a �t of .000048, or 20,889 time steps in the tree—possibly
a prohibitive computation in the time frame of a financial decision (see Figlewski
and Gao 1999b for further discussion).

This computational problem is rectified by Figlewski and Gao’s (1999a)
adaptive mesh model. Their insight is that a reduction in computational time is
attained by pricing the option on a relatively coarse lattice and then grafting a
smaller, finer tree onto this coarser lattice.
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Figure I. Illustration of Geometric Brownian Motion Adaptive Mesh. The initial asset price is given
by S. S′ is the asset price that provides the initial price point for the course mesh. B is the lower
barrier of the option. A single time step in the course mesh is given by �t. h is the course trinomial
jump size of the log asset price.

Figure I illustrates the implementation of the adaptive mesh model for a
down-and-out option for the first step of a trinomial tree.2 An option with an upper
barrier would yield a horizontal reflection of this figure. Let the lower barrier level
be given by B. The price of the barrier option is desired for an initial asset price S.
We construct a coarse trinomial tree as if the initial asset price is ln(S′) ≡ ln(S) +
h/2, where h is determined by applying the Ritchken procedure to S′. In Figure I this
coarse mesh is given by the three branching solid lines. The dotted lines represent
the finer mesh. The spacing as illustrated reveals a time step for this finer mesh at
one-fourth the spacing of the coarse mesh.

The finer mesh consists of the points labeled A through L, as well as the
time 0 point at ln(S). The purpose of this finer mesh is to capture the information
in the coarse mesh, augment it with the information contained in the finer mesh,
and use the two layers together to determine the time 0 value of the option when
the asset price is S.

Once the terminal nodes of the coarse lattice step have been determined,
it is then possible to begin working backward through the fine mesh. To link the
fine mesh to the coarse mesh, we first compute nodes A, B, and C. The value of

2Figure I is a subset of the information presented in Figure VI of Figlewski and Gao (1999a).
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the option at each of these points may be determined by drawing on information
available at the terminal coarse nodes. The probabilities for the up, down, and
middle ticks of the trinomial steps emanating from these three points are found by
solving equations analogous to those presented in equations (2) (see Figlewski and
Gao 1999a). Option values at these points are then determined by using risk-neutral
pricing—the option values are known for the coarse lattice. Option values for points
I, J, and K, along the barrier, are of course 0.

Once the information is known for points A, B, C, D, H, I, J, K, and L, it is
possible to determine the option values at points E, F, and G, and ultimately the value
of our option at time 0, asset price S. Subsequent time steps proceed analogously.
This method can dramatically decrease the computational time necessary to price
barrier options accurately, particularly when the asset price is close to the barrier.

The adaptive mesh described here is a single layer of fine mesh. Figlewski
and Gao (1999a) refer to this as AMM-1. It is possible to attach successive fine
layers to the model by repeating the process described here. In this way, it is possible
to build very accurate models based on relatively coarse trinomial trees.

III. The Jump-Diffusion Process and the Pricing
of Path-Dependent Options

Although GBM provides a well-understood environment in which we can examine
the effectiveness of the adaptive mesh model, it is primarily when the underlying
asset follows more complicated dynamics that the methodology should prove most
useful. Figlewski and Gao (1999a) provide no such extension. Asset prices have
been shown to exhibit both skewness and excess kurtosis, characteristics that cannot
be captured by the lognormal asset return model of GBM.

Several empirically viable alternative models have been proposed. Bakshi,
Cao, and Chen (1997) review and compare these models in the context of equity
index options—one of many underlying assets in which barrier option prices may
need to be determined. One such model that has had success in describing the
fluctuations in asset prices is the jump-diffusion model. Consider the following
risk-neutralized specification of the dynamics of the underlying asset:3

d S

S
= (r − d − λk̄) dt + σdz + kdq. (6)

This specification of the underlying process allows a continuous diffusion during the
“typical” evolution of the asset price, with the occasional “jump” in the asset price
due to the arrival of significant information concerning the asset price. The smooth

3We use notation consistent with Bates (1991) and Hilliard and Schwartz (2005).
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process is driven by standard Brownian motion, dz, magnified by the volatility
parameter σ . dS and dt denote infinitesimal changes in the asset price and time,
respectively. r is the riskless rate of interest, and d remains the proportional dividend
yield continuously paid by the underlying asset, as in equation (1). k is a random
variable that determines the magnitude of a jump, an event that only occurs when
dq = 1. The arrival of jumps is governed by a Poisson process, with intensity
parameter λ; dq = 0 at all other times. ln (1 + k) ∼ N (γ ′, δ2), and γ ′ ≡ γ − .5δ2.
E(k) ≡ k̄eγ − 1. Merton (1976) provides the value of a European option when the
underlying asset follows this process.

Hilliard and Schwartz (2005) develop a bivariate binomial tree for this
jump-diffusion process. In one dimension they allow for the smooth diffusion,
similar to the Cox, Ross, and Rubenstein (1979) model (hereafter denoted CRR).
In the second dimension they model the Poisson jumps. Specifically, they note that
the process in equation (6) may be written as

Vt ≡ ln

(
St

So

)
≡ Xt + Yt

Xt ≡
(

r − d − λk̄ − σ 2

2

)
t + σ z(t),

Yt ≡
n(t)∑
i=0

ln(1 + ki ),

(7)

where z(t) is
∫ t

0 dz and n(t) is the Poisson distributed number of jumps from 0 to t.
Hilliard and Schwartz (2005) model the smooth component as a binomial

process. However, the convergence of this binomial model exhibits the sawtooth
convergence for the pricing of barrier options similar to that reported in Boyle and
Lau (1994). We present a trinomial version that provides greater flexibility than the
binomial and refer readers to Hilliard and Schwartz for details of the original model.
Following that model, we allow the number of possible jumps from a given point
in the lattice, which captures the jump component of equation (7), to be chosen by
the modeler. Specifically, we define an “M-node” grid, where M = 2m + 1. m is
both the number of possible “up” jumps and the number of possible “down” jumps
in the tree. Also, it is possible that the asset experiences no jumps. The magnitude
of these jumps are separated by the parameter η. Therefore, a single step on the
2 × M grid is defined as:

V +
t+�t, j = Vt + h + jη, j = 0, ±1, ±2, . . . , ±m (8)

V 0
t+�t, j = Vt + jη, j = 0, ±1, ±2, . . . , ±m (9)

V −
t+�t, j = Vt − h + jη, j = 0, ±1, ±2, . . . , ±m, (10)
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                                                        ln(S0) + 2h

  ln(S0)

                   ln(S0)–h+η

time =     0                                          ∆t                                  2∆t

Figure II. Hillard and Schwartz Trinomial Tree in Two Dimensions. S0 is the initial asset price. h and
η are the smooth and discrete jump size of the log asset prices, respectively. A single time step
in the course mesh is given by �t.

where �t is the length of an individual time step. Figure II provides a two-
dimensional illustration for a five-node grid. With the five-node tree, each of the
three “groups” at time �t represent the smooth tick as well as the four possible
discrete nonzero jumps. The distance between a smooth uptick and downtick at �t
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is given by h. Notice that although the nodes per group grows at each time step, the
nodes do recombine. Two points on this graph have been labeled for clarity. The
starting value of ln(S0) is also given as a reference point.4 Hilliard and Schwartz
(2005) choose η to satisfy

η = α
√

(γ ′)2 + δ2, (11)

where α is set to 1, a value they determine provides greater accuracy for the model.
We continue to use this definition for η.

To determine the option prices, we must employ backward recursion. De-
note the value of a derivative at time t by F(V i,t). The backward recursion to
determine this option value is given by

F(Vi , t) = e−r (�t)
m∑

j=−m

[puq( j)F(Vi + h + jη, t + �t)

+ pmq( j)F(Vi + jη, t + �t)

+ pdq( j)F(Vi − h + jη, t + �t)].

(12)

The q(j) are the probabilities of a given jump realization (independent of the outcome
of the smooth process and summing to one), and p is the probability of a given
smooth tick.

We choose the smooth probabilities so that the moments of the discrete
tree match those of the underlying continuous process. As we have three possible
smooth steps, we match the first two moments of the underlying continuous process,
as well as a restriction that the probabilities sum to one. Similar to those presented
in equation (2), this leaves the following system of equations to be solved for the
probabilities:

E(ln(S(t + �t) − ln(S(t)) =
(

r − d − λk̄ − σ 2

2

)
�t = puh + pm0 + pd(−h)

E([ln(S(t + �t) − ln(S(t)]2) = σ 2�t = puh2 + pm0 + pd(−h)2

1 = pu + pm + pd

(13)

4Although the spacing of nodes within a group has been illustrated to be comparatively small (indicating
a small η), this is not necessarily the case.
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for which the solution is

pu =

(
r − d − λk̄ − σ 2

2

)
�t

2h
+ σ 2�t

2h2

pm = 1 − σ 2�t

h2

pd = σ 2�t

2h2
−

(
r − d − λk̄ − σ 2

2

)
�t

2h
.

(14)

Notice that if the arrival of jumps is eliminated (i.e., λ = 0), these probabil-
ities reduce to the probabilities derived from the GBM case in equation (3). As we
are modifying this model with the goal of pricing barrier options, we parallel the
Ritchken (1995) technique for selecting h in the GBM case. As in equation (5), we
eliminate the possibility of a nonnegative probability by defining a free parameter
�J >1 such that

�J = h2

σ 2(�t)
, (15)

again allowing this to establish the relationship between h and �t. In our imple-
mentation of this model, we use �J = 3 because of its established convergence
properties. h is chosen to allow an integer number of time steps between the log
asset price and the log barrier price.

The discrete jump probabilities are also given by a moment-matching con-
dition.5 The q(j) probabilities are chosen to match the first M–1 moments of Y, or

m∑
j=−m

( jη)i−1q( j) = µ′
i−1 ≡ E

[
n(�t)∑
j=0

ln(1 + k j )

]i−1

, i = 1, 2, . . . , M (16)

where µ′
i−1 is the ith local moment of Y . i = 1 yields the condition that the

probabilities must sum to one. The equations in (16) may be easily solved for q(j).
Hilliard and Schwartz (2005) produce simulation results that indicate that

the binomial model improves as jump nodes are added until we reach the seven-node
specification.

For the trinomial tree, like the binomial version, each time step i has
i∗(M − 1) + 1 nodes per group. Whereas the binomial tree has (i + 1) groups

5Strictly speaking, Hilliard and Schwartz (2005) determine these probabilities by matching cumulants,
which provide approximations for the relevant moments. The Appendix lists the relevant local cumulants.
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Figure III. Run Time Comparison: Various Models. Computational time for a Cox, Ross, and Rubenstein
(1979) (CRR) binomial tree and seven-node Hilliard and Schwartz (2005) jump binomial and
trinomial trees. Computational time is in seconds and run on a PC with and Intel Pentium 4
chip with 3.4 GHz and 1 GB of RAM. The program is compiled and executed in C++. The
Hilliard and Schwartz times are reported on the left axis, and the CRR model is reported on
the right axis.

per time step, the trinomial tree has (1 + 2i) of them. In either case the number
of nodes necessary to compute the option value is explosive. Figure III illustrates
the computational time necessary to price a European call on seven-node Hilliard–
Schwartz binomial and trinomial trees and a standard CRR binomial tree. Whereas
the total number of nodes on the n-step CRR binomial tree is given by (n+1)(n +
2)/2, the total number of nodes on the Hilliard–Schwartz binomial and trinomial
trees are

n∑
i=0

(1 + i)(i(M − 1) + 1) and
n∑

i=0

(2i + 1)(i(M − 1) + 1)

for an n-step, M-node tree, respectively. Whereas a 1,000-step CRR tree takes
approximately 1 second to run, a seven-node, 1,000 step Hilliard– Schwartz bi-
nomial tree takes 336 seconds and the trinomial 872 seconds to run on the same
machine.6 This dramatic time increase is attributable to the number of nodes. The

6Computational time is determined on a PC with an Intel Pentium 4 chip with 3.4 GHz and 1 GB of
RAM. The program is compiled and executed in C++.
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Hilliard–Schwartz binomial model must compute 2,006,505,500 nodes for this tree.
For the CRR model, there are 501,501 nodes. We timed the Hilliard–Schwartz model
only up to 2,000 time steps (machine RAM did not permit many time steps beyond
this), which took 54 minutes and 14 seconds for the binomial and 114 minutes and
28 seconds for the trinomial. The corresponding CRR model took 2 seconds.

These computational issues of the Hilliard and Schwartz model are largely
irrelevant for the pricing of American options. Hilliard and Schwartz (2005) docu-
ment effective convergence in 600 time steps, which we determine has a run time of
just a few minutes. They report other results that indicate even 200 time steps may
be sufficient. However, for the effective pricing of a barrier option a substantially
greater number of time steps may be required. The Hilliard–Schwartz binomial and
trinomial trees exhibit the same sawtooth convergence patterns for barrier options
as their GBM counterparts. Consider an example of the Ritchken (1995) technique
of choosing h so that a single smooth downtick (with no jumps) lands on the lower
barrier of the down-and-out option. We assume a reasonable parameratization (us-
ing the parameters of Panel A, Table 1 of Hilliard and Schwartz 2005) of σ = .2236,
λ = 5, γ = 0, and δ = .2236, which imply γ ′ = –.025. Further assume that the asset
price is 50 and the barrier is 49.75. The largest h that permits a single downtick
before hitting the barrier is h = ln(50) – ln(49.75) = .0050125. If �J = 3, this
implies �t = .000158, or 6,343 steps in the tree. This tree requires us to compute
more than 1.02 trillion nodes. We estimate that this model will take almost three
days to compute, even if the necessary RAM were available. Similar results are
easily demonstrable for up-and-out options.

The adaptive mesh model provides significant run-time improvements rel-
ative to the standard trinomial. As we have seen, the Hilliard–Schwartz model
increases in computational time even faster than the standard models. In the next
section we implement an extension of the standard adaptive mesh into the Hilliard–
Schwartz trinomial model, and demonstrate that the computational benefit of such
an extension is significant, rendering feasible a range of parameterizations for a
variety of barrier options that were previously infeasible.

IV. Extension of the Adaptive Mesh to the Jump-Diffusion Trinomial

Extension of the adaptive mesh model into the jump-diffusion trinomial requires a
generalization of the results from Section II. Our goal in this more complex setting
remains the grafting of a fine mesh tree onto a coarse tree that is able to satisfy the
Ritchken (1995) requirement of having an integer number of time steps until the
barrier with a tractable overall node count.

Figure IV illustrates the jump trinomial adaptive mesh constructed for a
down-and-out option, using an illustrative shorthand for the number of nodes at
each smooth tick grouping. For example, because the fine mesh in the figure is a
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Figure IV. Jump Trinomial Adaptive Mesh. This figure illustrates the nodes in the first step of an adaptive
mesh model implemented on a jump diffusion trinomial. The initial asset price is given by S. S′

is the asset price that provides the initial price point for the course mesh. B is the lower barrier
of the option. A single time step in the course mesh is given by �t. h is the course trinomial
jump size of the log asset price. Numbers in parentheses indicate the number of nodes in the
group. The coarse mesh is assumed to be a seven-node tree, and the finer mesh is a three-node
tree. Points B and C draw information from all seven nodes of the coarse lattice.

three-node mesh, the nodes of the second fine time step—C, F, and I—have paren-
thetical fives next to the nodes, indicating that there are five nodes in each group.
Figure IV is analogous to Figure I, though there are some important differences.

The coarse tree in Figure IV is a seven-node jump trinomial, which we
illustrate here near the barrier of a down-and-out option at time 0 with asset price
S.7 However, we define h/2 ≡ ln(S) – ln(B), and construct the coarse tree as if
the current asset price is S′, defined to satisfy ln(S′) = ln(B) + h. The concluding
nodes of this single coarse step are nodes A, D, and J. The spacing of these nodes
in the time dimension is determined by h and the relation defined in equation (15),
assuming the lattice begins with asset price S′.

The fine tree begins with asset price S. Like the adaptive mesh in Figure I,
a single coarse step is subdivided into multiple fine steps. At this point arbitrarily,
each fine step in this example is (1/3)�t . It is not desirable for this finer tree

7The fine mesh is placed analogously above the coarse mesh in the instance of a barrier option with
an upper barrier.
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to have as many jump nodes as the coarse tree. If the fine tree were a 7-node
tree, the fine mesh groups at points D, G, and J would each have 19 nodes. This
would not align with the number of coarse nodes at points D and J. Either new
information would have to be computed or the model would not be completely
specified.

For this example, the fine tree is modeled as a three-node tree. However, we
first determine the value of the “anchor” groups—B and C. These groups have three
and five constituent nodes, respectively, in accordance to their generation from a
three-node model. However, they each draw time �t information from groups
containing seven constituent nodes. For these groups to capture the maximum
possible information, we allow these anchor groups to branch into all nodes of the
A, D, and J groups (in this first time step, this is seven nodes). We again have two
sets of probabilities that must be determined, the ps that determine the movement
in the “smooth” space, and the q(j)s that determine the discrete jump movements.
For each node group B and C, we must solve a system of equations similar to
those presented in equation (13). The only modification must be to use a time step
of 2�t

3 for each of the nodes in group B, and a time step of �t
3 for the nodes in

group C. The resulting probabilities are a minor generalization of equation (14).
Specifically, y �t

3 substitutes in that equation for �t, where y = 1 in determining
group C probabilities and y = 2 for group B.

Similarly for each group, the q(j)s are determined by a series of equations
similar to those listed in equation (17):

m∑
j=−m

( jη)i−1q( j) = µ′
i−1 ≡ E

[
n(y�t)∑

j=0

ln(1 + k j )

]i−1

, i, . . . , M, (17)

where M = 2m + 1. Note, however, that the value of m is different for groups B
and C. Although group C is defined in the standard way, group B generates more
paths than would be typical for that group so as to match the seven nodes that exist
at points A, D, and J. Specifically, because there are three nodes within the group,
this group will be allowed to branch as if it were a five-node step. Therefore m in
equation (17) for each of the nodes in group B is 2. By contrast, m for the nodes in
group C is 1.

Groups H and I are determined analogously. Although the groups are drawn
on the barrier, only nodes with net zero jumps fall exactly on the barrier. Those
with net negative jumps are below the barrier (and thus worthless), but those with
net positive jumps lie above the barrier and must be assigned a value. It is therefore
necessary for some nodes in groups H and I to draw information from groups D, J,
and a third group below the illustration at time �t.

Now that the anchor groups of B, C, H, and I have been determined, we
may establish the groups that comprise the finer mesh—F, E, and the starting node
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(we assume that group G is known, as it is determined from information generated
between time �t and 2�t). Group F draws option information from each of the
seven nodes in each of the three groups D, G, and J. Group E draws on information
from each of the five nodes in each of the groups C, F, and I. Lastly, the starting
node draws information from each of the three nodes in each of the groups B, E,
and H. Although we only use a three-node fine mesh, the information from the
coarse mesh should have filtered effectively into the final solution.

The probabilities associated with the starting node and groups E and F
are straightforward to calculate. In all cases, the time step is given by �t

3 . Fur-
thermore, in all cases the smooth jump uptick magnitude is h/2. Solving equations
similar to equation (13) with �t replaced by �t

3 yields the appropriate risk-neutral
probabilities.

The discrete jump probabilities solve equations similar to (16):

m∑
j=−m

( jη)i−1q( j) = µ′
i−1 ≡ E

[
n(�t/3)∑

j=0

ln(1 + k j )

]i−1

, i = 1, 2, . . . , M. (18)

We define M2 to be the number of jump nodes in the fine mesh. In this example,
m = 1, resulting in an M2 = three-node fine tree.

We note earlier that the finer tree must have fewer jump nodes than the
coarse mesh. Specifically, it must be the case that

1 + (M2 − 1)n2 ≤ M, (19)

where n2 is the number of fine mesh time steps per step of the coarse mesh. In the
example presented in Figure IV, M2 = 3, n2 = 3, and M = 7, causing equation
(19) to hold with equality. If the left-hand side of equation (19) is greater than the
right-hand side, eventually the number of nodes per group in the fine mesh will
exceed the number of nodes per group in the coarse mesh, resulting either in an
incomplete model or the need to generate nodes (and consequently significantly
increase computer run time). It is only when equation (19) holds as an equality
that the maximum amount of information is being generated within the fine mesh,
relative to the coarse mesh.

Equation (19) also imposes a limit on the adaptive mesh in the Hilliard–
Schwartz model that is not present in the standard trinomial. To add additional
layers of mesh in the jump-diffusion world, an equation such as (19) must hold
between the first and the second layers of the mesh. It is always possible to add an
arbitrary number of layers of standard trinomial mesh with the probabilities chosen
to match the moments of the jump diffusion process, but the convergence properties
of such an approach have yet to be fully explored.
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V. Empirical Results

In unreported results, we compare the pricing accuracy of the trinomial modification
of the Hilliard–Schwartz model with the original binomial model and the analytic
value for European options. For a reasonable set of parameterizations, we confirm
that both the binomial and trinomial models, even for 200 time steps, are able to
accurately price the European put options.

Tables 1a and 1b present values and run times for the Hilliard–Schwartz
trinomial, the Hilliard–Schwartz trinomial model with the Ritchken (1995) mod-
ification of the asset price landing on the barrier after exactly one downtick or
uptick (and thereby setting the number of time steps), and our AMM implemen-
tation of the trinomial model with the same Ritchken modification. We use each
model to evaluate down-and-out calls and puts as well as up-and-out calls and puts.
We use a base case of parameters and price down-and-out options with a barrier of
B = 100 and up-and-out options with a barrier of B = 110. Our base case here is
X = 105, σ = .1, λ = 3, γ = 0, δ = .05, r = .05, and T = 1. We provide simulated
values for comparison.

Panel A of Tables 1a and 1b presents the results for this base case of
parameters as the stock price approaches the barrier. Upon initial inspection, the
significant inaccuracy in both the Ritchken and AMM-1 modifications for large
asset price distances from the barrier value may seem puzzling. However, because
the number of time steps in both models is inversely related to the size of this spread,
this is to be expected. Because of the large spread, the number of time steps is too
small for any lattice model to be accurate. As the table shows, the accuracy of both
models improves significantly as the spread decreases. Both of these models are
intended to be used when the asset price is close to the barrier, and as the tables
show, they are accurate in this range.

However, as the asset prices approach the barrier, the trinomial model
with a fixed number of time steps yields pricing solutions with potentially great
error. For example, when pricing an up-and-out call when S = 109.5, the 600-step
trinomial tree gives a value for the option (∗100) of $.464, a difference of roughly
$.182 from the simulated value of about $.146, resulting in an error of about 65%.8

The Ritchken modification of the trinomial model provides a much more accurate
solution, coupled with a run time of about 56 minutes and 43 seconds on the test
computer. By comparison, the AMM model yields a similarly accurate solution
with an error within the confidence bounds and a run time of 48 seconds—about
1.41% the run time of the Ritchken model. The run-time advantage of the AMM
procedure is more pronounced for asset prices closer to the barrier. With an asset

8The 600-step binomial tree has a run time of 213 seconds on our test computer.
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price of $109.75, the Ritchken modified trinomial requires 5,794 time steps and
may not be computed on our test computer. By comparison, the AMM modification
that yields results within the simulation confidence bounds can be computed on the
test machine in about one hour.

Panel B of Tables 1a and 1b compares the hedging parameters of the three
lattice models. The fixed-step trinomial continues to fare poorly. The delta of the
Ritchken trinomial model and the AMM trinomial provide similar results and good
accuracy in matching the delta of the options.9

So what drives the run-time improvements? For the Ritchken technique,
the value of h is given by ln(S) – ln(B). This, combined with equation (15) and
recognizing that �t = T

N when N is the number of time steps in the tree, yields

ln(S) − ln(B) =
(

σ

√
T

N

) √
�J . (20)

Because �J is fixed, as S approaches B, N must get larger, resulting in longer run
times.

As equation (20) makes clear, for a given stock price and barrier level (and
thus a given, fixed h) a doubling of the smooth process volatility necessitates a qua-
drupling of time steps. A doubling of the expiration date of the option necessitates
a doubling of the number of time steps.

The Ritchken technique is also employed for the AMM. The creation of a
coarse mesh from a higher initial stock price, and then grafting a finer mesh onto
the lattice simply reduces the number of necessary time steps—it does not alter the
underlying relation. Specifically, by building a coarse mesh using an h that is twice
as large as would be the case under the standard Ritchken procedure, the relation
becomes

2(ln(S) − ln(B)) =
(

σ

√
T

N

) √
�J , (21)

9The deltas of both the Ritchken modified trinomial and the AMM trinomial are consistently reliable.
For example, in unreported results, we find that of the 40 down-and-out calls for which we have simulated
prices and deltas (and for which the AMM had more than four time steps), the average difference between
the trinomial and AMM deltas is .26%, with a maximum of 1.9%. The average AMM deviation from the
simulated delta value is –1.7%, and the worst performance was a deviation of –8.2%. Consistently, as the
stock approached the barrier (and therefore time steps were added to both models), the deltas converged to
the simulated values. Results were similar across instruments. Because the models performed well and so
similarly, this similarity is noted and excluded from the ensuing analysis.
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or

ln(S) − ln(B) =
(

σ

√
T

4N

) √
�J . (22)

Therefore, the AMM-1 model has only one-fourth the coarse mesh time steps of the
standard trinomial. This is true in all cases. Given the explosive computational cost
of increasing time steps in the Hilliard–Schwartz model, this becomes particularly
important when the ln(S) is close to ln(B), when σ is high, or when time to expiration
T is large.10

The computational benefit of the AMM in the case of a down-and-out call
is illustrated in Figure V. Panel A shows the run times for the jump trinomial model
for a range of time steps and for the AMM modification. Panel B gives the values
of the trinomial model over the same range of time steps, the Ritchken modification
with both one and two steps to the barrier, and the AMM modification. Also, Panel
B gives the true option value. The set of parameters are arbitrarily chosen here
to be X = 105, B = 100, λ = 3, γ = 0, δ = .1, r = .05, σ = .05, T = 1, and
S = 100.5. The AMM and Ritchken modifications are shown at only one time step
each because spread between the asset price and the barrier determines the number
of time steps until expiration.

In Panel B of Figure V we see the sawtooth convergence toward the true
option price. For the trinomial method to achieve an accurate result, the model must
have 301 time steps. Because of the high computational cost of additional time steps,
the AMM model, with only 75 required time steps, significantly reduces run time.
Panel A illustrates these computational benefits as the run time is reduced from 28
seconds for a one-step Ritchken modification to less than one second for the AMM
modification.

The run time improvement of the AMM implementation is most significant
for high values of the volatility of the continuous process. Tables 2a and 2b illustrate
this using our base case of parameters but allow σ to take values of .05, .1, and .15.
The 600-step trinomial implementation exhibits unreliable pricing whenever the
asset price is close to the barrier, and the Ritchken modified trinomial continues to
perform well. However, the higher volatility necessitates a higher number of time
steps and therefore a longer run time. For all instruments, notice the quadrupling
of the time steps when the volatility is doubled from .05 to .1, for both the Ritchken
trinomial and the AMM models. This is in agreement with equations (20)–(22).
Because of the rapid increase in run time, use of the Ritchken trinomial becomes
impractical when the stock price is even farther from the barrier than those illustrated

10Note that these relations hold in the GBM case exactly as they do in the jump-diffusion case discussed
here.
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in Tables 1a and 1b. In the S = 100.5, σ = .15 case for down-and-out options, the
Ritchken model again can not be computed. By comparison, the AMM model takes
5 minutes and 10 seconds, and exhibits an error of only 1.5% for down-and-out
calls and 2.5% for down-and-out puts. For the S = 100.25, σ = .15 case, the AMM
model also exceeded the memory capacity of the computer. However, this may be
overcome with a second layer of adaptive mesh. Conversely, for low volatilities,
most notably at high stock prices, the AMM model performs poorly because the
resultant number of time steps is too low to merit accuracy.

Tables 3a and 3b illustrate the effect of time to expiration on the run times
and accuracies of the Ritchken trinomial and AMM models. As expected from an
examination of equations (20)–(22), the number of time steps in either of these
models increases linearly as T increases, although the AMM model has only 25%
the number of time steps as the Ritchken trinomial model. For very long-dated
options, such as the T = 2 examples demonstrated in Tables 3a and 3b, the models
may reach a point at which they cannot be computed. The Ritchken model arrives
at this point well before the AMM model.

The remaining parameters of the model do not affect the number of time
steps in the Ritchken trinomial or AMM model. However, their magnitudes may
affect the accuracy of the respective models. In unreported results, we examine
the models for various jump volatilities and strike prices. As expected, the perfor-
mance of the Ritchken trinomial and AMM models are comparable.11 The 600-step
trinomial tree continues to do a poor job of pricing these options.

Also unreported, we implement the AMM model to price American options
when the underlying stock follows the jump-diffusion process, in a manner similar
to that reported in Figlewski and Gao (1999a). We find the AMM model yields
convergence patterns almost identical to the Hilliard and Schwartz (2005) results
without the AMM modification.

VI. Conclusion

We present an extension of the Hilliard and Schwartz (2005) binomial bivariate
pricing algorithm for jump-diffusion processes. The explosive nature of the algo-
rithm’s computational cost as time steps are added to the tree can render the model
infeasible for determining the price of certain barrier options. To address this dif-
ficulty we extend this model to a trinomial framework and apply a modification of
the adaptive mesh techniques presented in Figlewski and Gao (1999a).

We find a significant decline in computational time—for example, our new
model easily provides 60-fold decreases in run times to obtain accurate prices for

11These results are available upon request from the contact author.
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close-to-the-barrier knock-out options. Furthermore, we examine the benefits of
this adaptive mesh modification for various parameterizations and types of barrier
options relative to the standard Ritchken (1995) modification of trinomial tree jump
size. We find that the adaptive mesh modification is particularly valuable when pric-
ing options with high volatility with a long time to expiration, or a stock price very
close to the barrier. There are limits to the benefits, however, as we demonstrate that
the same mechanism that causes explosive run times in the Ritchken modification
of the Hilliard–Schwartz model also affects the adaptive mesh implementation.
The adaptive mesh implementation simply expands the computationally feasible
parameter set in the dimensions of time to expiration, stock price, and (smooth)
volatility.

Appendix

The following are the first 12 cumulants for the jump process under Poisson com-
pounding:

κ1 = λ�(γ ′)

κ2 = λ�((γ ′)2 + δ2)

κ3 = λ�((γ ′)3 + 3(γ ′)δ2)

κ4 = λ�((γ ′)4 + 6δ2(γ ′)2 + 3δ4)

κ5 = λ�((γ ′)5 + 10δ2(γ ′)3 + 15δ4(γ ′))

κ6 = λ�((γ ′)6 + 15δ2(γ ′)4 + 45δ4(γ ′)2 + 15δ6)

κ7 = λ�((γ ′)7 + 21δ2(γ ′)5 + 105δ4(γ ′)3 + 105δ6(γ ′))

κ8 = λ�((γ ′)8 + 28δ2(γ ′)6 + 210δ4(γ ′)4 + 420δ6(γ ′)2 + 105δ8)

κ9 = λ�((γ ′)9 + 36δ2(γ ′)7 + 378δ4(γ ′)5 + 1260δ6(γ ′)3 + 945δ8(γ ′))

κ10 = λ�((γ ′)10 + 45δ2(γ ′)8 + 630δ4(γ ′)6 + 3150δ6(γ ′)4 + 4725δ8(γ ′)2

+ 945δ10)

κ11 = λ�((γ ′)11 + 55δ2(γ ′)9 + 990δ4(γ ′)7 + 6930δ6(γ ′)5

+ 17325δ8(γ ′)3 + 10395δ10(γ ′))

κ12 = λ�((γ ′)12 + 66δ2(γ ′)10 + 1485δ4(γ ′)8 + 13860δ5(γ ′)6 + 51975δ8(γ ′)4

+ 62370δ10(γ ′)2 + 10395δ12)
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